Quantcast
Channel: Classical Physics
Viewing all articles
Browse latest Browse all 57941

Divergence of velocity of incompressible fluid in uniform gravity

$
0
0
Hi!

The velocity field as a function of poisition of an incompressible fluid in a uniform acceleration field, such as a waterfall accelerated by gravity can be found as follows:
The position is [itex]\vec{x}[/itex].
The velocity field is [itex] \vec{v} = \frac{d\vec{x}}{dt}[/itex].
The constant acceleration field is [itex]\vec{a}=\frac{d\vec{v}}{dt} =\frac{d\vec{v}}{dt}\frac{d\vec{x}}{d\vec{x}}= \frac{d\vec{v}}{d\vec{x}}\frac{d\vec{x}}{dt} = \frac{d\vec{v}}{d\vec{x}}\vec{v}[/itex].
Now we can find the velocity as a function of position by rearranging the above and integrating:
[itex]\int\vec{a}\cdot d\vec{x} = \int\vec{v}\cdot d\vec{v}[/itex]

[itex]\vec{a}\cdot \vec{x} = \frac{\vec{v}^2}{2}[/itex]

[itex]\vec{v} = (2\vec{a}\vec{x})^{\frac{1}{2}}[/itex]

The divergence of the velocity field is then

[itex]\vec\nabla\cdot\vec{v} = \vec\nabla\cdot(2\vec{a}\vec{x})^{\frac{1}{2}} = (2\vec{a})^{\frac{1}{2}}\vec\nabla\cdot \frac{\vec{x}^{-\frac{1}{2}}}{2} =\sqrt{\frac{\vec{a}}{2\vec{x}}}[/itex]

But shouldn't [itex]\vec\nabla\cdot\vec{v} = 0[/itex] in an incompressible fluid? The stramlines are all parallel to one another, as they follow the gravitational field, so they shouldn't diverge.

Where has my thinking gone wrong?

Viewing all articles
Browse latest Browse all 57941

Trending Articles