Quantcast
Viewing all articles
Browse latest Browse all 57941

The mechanics of ice skating

Hello, I'm trying to bone up on my conservation of angular momentum skills as well as my ice skating skills so I can be like my hero, Michio Kaku.



Unfortunately my ice skating skills are better than my physics skills, so I thought y'all might be able to help. Here's the question, if angular momentum, L, equals the moment of inertia of a body, I, multiplied by its angular velocity, ω, then does [itex]L=mr^2(2πf)[/itex]?

Now, if that's true, then does [itex]r=\sqrt{L/m2πf}[/itex]?

And, accordingly, [itex]f=L/m2πr^2[/itex]?

I just attempted to derive these myself so I don't know if I'm missing something here.

Plugging in some values, then, if I weighed 100 kg and started spinning at 1 cycle per second with my arms extended at a 1 meter radius, then would my angular momentum be 628.32 joule-seconds?

Now say we were to conserve this figure as I varied my "moment" during my spin by moving my arms inward and outward of my torso. Say I brought my arms in so that my radius was .5 meters instead of 1 meter. Would my rotation rate then be 4 cycles per second?

Finally, if I decided I wanted to rotate at a comfortable 2 cycles per second, would I need to move my arms to a position whereby my radius was 0.7 meters?

Am I calculating these figures correctly? Thanks for your help. Also, I do have one follow up question once I get all of this checked out.

Attached Images
Image may be NSFW.
Clik here to view.
File Type: jpg
michio_kaku.jpg (29.7 KB)

Viewing all articles
Browse latest Browse all 57941

Trending Articles