Quantcast
Channel: Classical Physics
Viewing all articles
Browse latest Browse all 57941

Force in spring due to falling object

$
0
0
Hi,

I'm designing a crane that is supposed to withstand forces due to a falling object attached to the crane with a non-elastic cable. I have some troubles to calculate what force that will be due to the falling object.

I figured that one way is to simplify this system with a spring with spring constant k, extension of the spring x, non-elastic cable of length h, object with mass m, gravitational constant g.

Then, the spring is hanging vertical, attached in the upper end to a rigid mount and the cable in the free hanging end, and in the free end of the cable the object is attached. If the object is falling from the point where the cable is attached to the spring it will fall the distance h. Then the following expressions may be used.

1. Potential energy due to a height, E=mgh
2. Potential energy in the spring due to an extension, E=0.5kx^2
3. Hooke´s law due to an extension, F=kx

1 and 2 gives mgh=0.5kx^2 which gives x=sqrt(2mgh/k). This combined with 3 gives F=kx=sqrt(2mgkh).

Am I right in my reasoning and the last expression? For which cases is this then true?

I would be most grateful for response.

Regards
Christopher

Viewing all articles
Browse latest Browse all 57941

Trending Articles