f(z,t)=\frac{A}{b(z-vt)^{2}+1}...
\frac{\partial^{2} f(z,t)v^{2} }{\partial z^2}=\frac{-2Abv^{2}}{[b(z-vt)^{2}+1]^{2}}+\frac{8Ab^{2}v^{2}(z-vt)^{2}}{[b(z-vt)+1]^{3}}=\frac{\partial^2 f}{\partial t^2}
\frac{-2Abv^{2}}{[b(z-vt)^{2}+1]^{2}}+\frac{8Ab^{2}v^{2}(z-vt)^{2}}{[b(z-vt)+1]^{3}}
this is a solution of the wave equation, but it can be written with the Laplacian. is this also a hyperbolic partial differential equation. Alembert derived the solution that 1D waves are the addition of right and left moving functions
what is the meaning of the 2nd partial derivatives in respect to time and position which differ by v^2? (I wrote this on online Latex editor, the differentiation is in the attachment)
thanks very much!
\frac{\partial^{2} f(z,t)v^{2} }{\partial z^2}=\frac{-2Abv^{2}}{[b(z-vt)^{2}+1]^{2}}+\frac{8Ab^{2}v^{2}(z-vt)^{2}}{[b(z-vt)+1]^{3}}=\frac{\partial^2 f}{\partial t^2}
\frac{-2Abv^{2}}{[b(z-vt)^{2}+1]^{2}}+\frac{8Ab^{2}v^{2}(z-vt)^{2}}{[b(z-vt)+1]^{3}}
this is a solution of the wave equation, but it can be written with the Laplacian. is this also a hyperbolic partial differential equation. Alembert derived the solution that 1D waves are the addition of right and left moving functions
what is the meaning of the 2nd partial derivatives in respect to time and position which differ by v^2? (I wrote this on online Latex editor, the differentiation is in the attachment)
thanks very much!