Quantcast
Channel: Classical Physics
Viewing all articles
Browse latest Browse all 57941

deriving del cross A in Electrodynamics

$
0
0
Hello,

I am trying to derive the equation for the B-field due to a moving charge. ~ Griffiths Chapter 10, equation 10.66.

I have been trying to “do” the del cross A and simplify . Things get messy and I am uncertain on some of my vector operations.

In searching the internet I find statements like, from del cross A and a little algebra you get …

I have tried 3 different times and can get some of it and a good bit of mess.

Below is an attempt.

The final result is (what I want to end up with):

[tex] \nabla \times \vec{A} = - \frac{1}{c}\frac{q}{4\pi e_0}\frac{1}{(\vec{u}*\vec{r})^3}\vec{r} \times [(c^2 – v^2)\vec{v} + (\vec{r}\bullet \vec{a})\vec{v} + (\vec{r}\bullet \vec{u})\vec{a}][/tex]


Some background equations:

[tex] \vec{A} = \frac{\vec{v}}{c^2} V[/tex]

[tex]V = \frac{1}{4\pi e_0}\frac{qc}{(rc - \vec{r}\bullet \vec{v})} [/tex]

Using a product rule for a cross product:

(1) [tex] \nabla \times \vec{A} = \frac{1}{c^2}\nabla \times (V\vec{v}) - \vec{v} \times (\nabla V)[/tex] (1)



[tex] \nabla \times \vec{v} = ( -\vec{a} \times \nabla t_r)[/tex]

[tex] \nabla t_r = -\frac{\vec{r}}{rc - \vec{r} \bullet \vec{v}} [/tex]


[tex] \nabla V = \frac{1}{4\pi e_0}\frac{qc}{(rc - \vec{r}*\vec{v})^3} [(rc - \vec{r}\bullet \vec{v})\vec{v} - (c^2-v^2 + \vec{r}\bullet \vec{a})\vec{r}][/tex]

Plug these into (1)


[tex] \nabla \times \vec{A} = \frac{1}{c^2}[\frac{1}{4\pi e_0}\frac{qc}{(rc - \vec{r}\bullet \vec{v})}](-\vec{a} \times \nabla t_r))-\vec{v}\times [\frac{1}{4\pi e_0}\frac{qc}{(rc - \vec{r}\bullet \vec{v})^3}[((rc - \vec{r}\bullet \vec{v})\vec{v}) - ((c^2-v^2 + \vec{r}\bullet \vec{a})\vec{r})]] [/tex]


Factor out a [tex]\frac{qc}{4\pi e_0} [/tex]


[tex] \nabla \times \vec{A} = \frac{1}{c^2}\frac{qc}{4\pi e_0} [\frac{1}{(rc - \vec{r}\bullet \vec{v})}](-\vec{a} \times \nabla t_r))-\vec{v}\times [\frac{1}{(rc - \vec{r}\bullet \vec{v})^3}((rc - \vec{r}\bullet \vec{v})\vec{v}) - ((c^2-v^2 + \vec{r}\bullet \vec{a})\vec{r})] [/tex]

Can I factor out a [tex]\frac{1}{(rc - \vec{r}\bullet \vec{v}}) [/tex] ?

And end up with:

[tex] \nabla \times \vec{A} = \frac{1}{c^2}\frac{qc}{4\pi e_0}\frac{1}{(rc - \vec{r}\bullet \vec{v})} (-\vec{a} \times \nabla t_r))-\vec{v}\times [\frac{1}{(rc - \vec{r}\bullet \vec{v})^2}[((rc - \vec{r}\bullet \vec{v})\vec{v}) - ((c^2-v^2 + \vec{r}\bullet \vec{a})\vec{r})]] [/tex]


Using the equation for [tex] \nabla t_r [/tex]

[tex] \nabla \times \vec{A} = \frac{1}{c^2}\frac{qc}{4\pi e_0}\frac{1}{(rc - \vec{r}\bullet \vec{v})} [(-\vec{a} \times -\frac{\vec{r}}{(rc - \vec{r} \bullet \vec{v})})-\vec{v}\times [\frac{1}{(rc - \vec{r}\bullet \vec{v})^2}[((rc - \vec{r}\bullet \vec{v})\vec{v}) - ((c^2-v^2 + \vec{r}\bullet \vec{a})\vec{r})]]] [/tex]

Can I factor out another [tex]\frac{1}{(rc - \vec{r}\bullet \vec{v}}) [/tex] ?

Yielding:

[tex] \nabla \times \vec{A} = [\frac{1}{c^2}\frac{qc}{4\pi e_0}\frac{1}{(rc - \vec{r}\bullet \vec{v})^2}] [(-\vec{a} \times -\vec{r}) -\vec{v}\times [\frac{1}{(rc - \vec{r}\bullet \vec{v})}[((rc - \vec{r}\bullet \vec{v})\vec{v}) - ((c^2-v^2 + \vec{r}\bullet \vec{a})\vec{r})]]] [/tex]

I see that I have a
[tex] \vec{v} \times \vec{v}[/tex] in the middle which results in zero.

[tex] \nabla \times \vec{A} = [\frac{1}{c^2}\frac{qc}{4\pi e_0}\frac{1}{(rc - \vec{r}\bullet \vec{v})^2}] [(-\vec{a} \times -\vec{r}) + \vec{v}\times [ \frac{((c^2-v^2 + \vec{r}\bullet \vec{a})\vec{r})}{(rc - \vec{r}\bullet \vec{v})}]] [/tex]

Introducing [tex] \vec{u} = c\hat{r} – \vec{v} [/tex]

[tex] \vec{r} \bullet \vec{u} = (rc - \vec{r} \bullet \vec{v}) [/tex]


[tex] [/tex]
Assuming I am correct at this point, here is where for me things start getting messy.
[tex] \nabla \times \vec{A} = [\frac{1}{c^2}\frac{qc}{4\pi e_0}\frac{1}{(\vec{r} \bullet \vec{u})^2}] [(-\vec{a} \times -\vec{r}) + \vec{v}\times [ \frac{((c^2-v^2 + \vec{r}\bullet \vec{a})\vec{r})}{(\vec{r} \bullet \vec{u})}]] [/tex]

Frustration is showing up and I could use some help.

Bottom line is I am trying to derive and see how to get the del cross A result at the top. Searching the internet I find that equation and how it is used for the B field but not how it was derived.

Thanks
Sparky_

Viewing all articles
Browse latest Browse all 57941

Trending Articles