Hi all,
I have a question about the "missing cone" problem in wide-field microscopy. The Fourier equivalent of the PSF is the OTF. The OTF has a toroidal (doughnut) shape. I'm a little confused by how to interpret the OTF support in the Z dimension. In 2D and considering lateral resolution only, the OTF support is circular with the origin at the zero frequency (average image brightness). When you add Z into it and view the 3D OTF model what can you say about spatial frequencies in Z? Obviously some info in Z is captured because the torus has lobes either side of the missing cone.
Increasing distance along the Z axis of the OTF represents higher spatial frequencies? same as the case for x and y. So basically what do the side lobes represent in the real image and what does the missing cone represent?
Many thanks!
I have a question about the "missing cone" problem in wide-field microscopy. The Fourier equivalent of the PSF is the OTF. The OTF has a toroidal (doughnut) shape. I'm a little confused by how to interpret the OTF support in the Z dimension. In 2D and considering lateral resolution only, the OTF support is circular with the origin at the zero frequency (average image brightness). When you add Z into it and view the 3D OTF model what can you say about spatial frequencies in Z? Obviously some info in Z is captured because the torus has lobes either side of the missing cone.
Increasing distance along the Z axis of the OTF represents higher spatial frequencies? same as the case for x and y. So basically what do the side lobes represent in the real image and what does the missing cone represent?
Many thanks!