Quantcast
Channel: Classical Physics
Viewing all articles
Browse latest Browse all 57941

Derivation in classical mechanics

$
0
0
I'm studying classical mechanics and I'm stumbling in the quantity of differential identities.

Being S the action, H the hamiltonian, L the lagrangian, T the kinetic energy and V the potential energy, following the relationships:



But, the big question is: that's all? Or has exist more?

Seems be missing
$$\frac{\partial S}{\partial q'} \;\;\; \frac{\partial S}{\partial p} \;\;\; \frac{\partial S}{\partial p'} \;\;\; \frac{\partial S}{\partial q'} \;\;\; \frac{\partial L}{\partial p} \;\;\; \frac{\partial L}{\partial p'} \;\;\; \frac{\partial H}{\partial p'} \;\;\; \frac{\partial H}{\partial q'} \;\;\; \frac{\partial V}{\partial q'} \;\;\; \frac{\partial V}{\partial p} \;\;\; \frac{\partial V}{\partial p'} \;\;\; \frac{\partial T}{\partial q} \;\;\; \frac{\partial T}{\partial p} \;\;\; \frac{\partial T}{\partial p'}$$
These relation exist? Make sense? If yes, how will be the identities?

Attached Images
File Type: png imagem.PNG (9.5 KB)

Viewing all articles
Browse latest Browse all 57941

Trending Articles