Hi all,
I have a question for all of you. I've been wanting to make a 3D vector field that would represent a magnetic field (for fun) around some segment of wire with a constant current flowing through it. I'm assuming I have a parametric equation for the wire segment. The one equation that comes to mind is Biot-Savart's law:
[tex] \vec { B } =\frac { { \mu }_{ 0 }I }{ 4\pi } \int { \frac { d\vec { s } \times \hat { r } }{ { r }^{ 2 } } } [/tex]
In practice, I've only ever used Biot-Savart's law to calculate in 2-D, and either the wire segment has been of infinite length, or we were just calculating the electric field at one-point, and the math has been nice. I want to generate a vector field that gives the magnetic field at all points around the wire. Does anyone know how to go about doing this ? What sorts of equations/techniques lend themselves to this ? Any nice examples people can point to (URLs) ?? Thank you.
I have a question for all of you. I've been wanting to make a 3D vector field that would represent a magnetic field (for fun) around some segment of wire with a constant current flowing through it. I'm assuming I have a parametric equation for the wire segment. The one equation that comes to mind is Biot-Savart's law:
[tex] \vec { B } =\frac { { \mu }_{ 0 }I }{ 4\pi } \int { \frac { d\vec { s } \times \hat { r } }{ { r }^{ 2 } } } [/tex]
In practice, I've only ever used Biot-Savart's law to calculate in 2-D, and either the wire segment has been of infinite length, or we were just calculating the electric field at one-point, and the math has been nice. I want to generate a vector field that gives the magnetic field at all points around the wire. Does anyone know how to go about doing this ? What sorts of equations/techniques lend themselves to this ? Any nice examples people can point to (URLs) ?? Thank you.