Hi,
Im working through some chapters of Goldstein and I'm up to canonical transformations now. On page 370 it says that the variational principle for the hamiltonians K and H are both satisfied if H and K are connected by a relation of the form
λ(pq' - H) = PQ' - K + dF/dt
And I can see this. My question is, are there canonical transformations that do not fit this relation? And if so are they impportant? Is this relation a very general one, or does it simply turn out to give good tranformations in many problems?
A_B
Im working through some chapters of Goldstein and I'm up to canonical transformations now. On page 370 it says that the variational principle for the hamiltonians K and H are both satisfied if H and K are connected by a relation of the form
λ(pq' - H) = PQ' - K + dF/dt
And I can see this. My question is, are there canonical transformations that do not fit this relation? And if so are they impportant? Is this relation a very general one, or does it simply turn out to give good tranformations in many problems?
A_B